Genetic Algorithms, and Hardness
نویسندگان
چکیده
Genetic algorithm (GA) researchers have long desired to describe the key characteristics of GA-hardness. Unfortunately this goal has remained largely unmet. In this paper, we describe a new way for evaluating GA-hardness that is based on the foundations of formal complexity theory. In particular, a GA-reduction is introduced. Using this reduction, we show that a reasonable definition of "GA-hardness" is essentially the same as the definition of "hardness" in complexity theory. We then provide a definition called "GA-semi-hard" that describes a problem that takes longer to solve with a GA than it does using any other method. The problem "Sort" is shown to meet this criterion. Finally, implications and possible future research directions are discussed. Key-Words: -Genetic Algorithms, Hardness, GA-hard, Complexity
منابع مشابه
Solving a Multi-Item Supply Chain Network Problem by Three Meta-heuristic Algorithms
The supply chain network design not only assists organizations production process (e.g.,plan, control and execute a product’s flow) but also ensure what is the growing need for companies in a longterm. This paper develops a three-echelon supply chain network problem including multiple plants, multiple distributors, and multiple retailers with amulti-mode demand satisfaction policy inside of pro...
متن کاملOptimal Recombination in Genetic Algorithms
This paper surveys results on complexity of the optimal recombination problem (ORP), which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We consider efficient reductions of the ORPs, allowing to establish polynomial solvability or NP-hardness of the ORPs, as well as direct proofs of hardness results.
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملA New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm
Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کامل